NR²²CONR²³R²⁴, —NR²⁵CO₂R²⁶,—COR²⁷,—NR²⁸COR²⁹, or —NR³⁰SO₂R³¹; and R¹¹,R¹²,R¹³,R¹⁴,R¹⁵, R¹⁶,R¹⁷,R¹⁸,R¹⁹,R²⁰,R²¹,R²²,R²³,R²⁴,R²⁵,R²⁶, R²⁷,R²⁸,R²⁹, R³⁰ and R³¹ each independently represents a hydrogen atom, an aliphatic group, or an aromatic group;

[0016] A represents —NR⁴R⁵ or a hydroxyl group; R⁴ and R⁵ each independently represents a hydrogen tom, an aliphatic group, an aromatic group or a heterocyclic group; B¹ represents —C(R⁶)— or —N—; B² represents —C(R⁷)— or —N—;R²,R³,R⁶ and R⁷ each independently represents a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, —OR⁵¹,—SR⁵²,—CO₂R⁵³,—OCOR⁵⁴,—NR⁵⁵R⁵⁶,—CONR⁵⁷R⁵⁸,—SO₂R⁵⁹,SO₂NR⁶⁰R⁶¹,—NR^βCONR⁶³R⁶⁴,—NR⁶⁵CO₂R⁶⁶,—COR⁶⁷,—NR⁶⁸COR⁶⁹ or —NR⁷⁰SO₂R⁷¹; R⁵¹,R⁵²,R⁵³,R⁵⁴,R⁵⁵,R⁵⁶,R⁵⁷,R⁵⁸,R⁵⁹,R⁶⁰,R⁶¹,R⁶²,R⁶³,R⁶⁴, R⁶⁵,R⁶⁶,R⁶⁷, R⁶⁸,R⁶⁹,R⁷⁰ and R⁷¹ each independently represents a hydrogen atom, an aliphatic group or an aromatic group; R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, or R⁶ and R⁷ may be bonded to each other to form a ring;

heterocycle; this heterocycle may be substituted with at least one substituent selected from an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, —OR⁸¹, —SR⁸²,—CO₂R⁸³,—OCOR⁸⁴,—NR⁸⁵R⁸⁶,—
CONR⁸⁷R⁸⁸,—SO₂R⁸⁹,SO₂NR⁹⁰R⁹¹,—
NR⁹²CONR⁹³R⁹⁴,—NR⁹⁵CO₂R⁹⁶,—COR⁹⁷,—
NR⁹⁸COR⁹⁹, and —NR¹⁰⁰SO₂R¹⁰¹; the substituent(s) may further have one or more substituents; the nitrogen-containing heterocycle may be combined with another ring to form a condensed ring; and R⁸¹,R⁸²,R⁸³,R⁸⁴,R⁸⁵,R⁸⁶,R⁸⁷,R⁸⁸,R⁸⁹,R⁹⁰,R⁹¹,R⁹²,R⁹³,R⁹⁴,R⁹⁵,R⁹⁶,R⁹⁷,R⁹⁸,R⁹⁹,R¹⁰⁰ and R¹⁰¹ each independently represents a hydrogen atom, an aliphatic

[0017] C forms a 5- or 6-membered nitrogen-containing

[0018] A third aspect of the present invention is an ink for ink-jet comprising: a coloring composition dispersed in a water based medium, containing coloring particulates containing an oil soluble dye represented by the following formula (III) and an oil soluble polymer:

group or an aromatic group.

Formula (III)

R²

R³

R⁴

$$\mathbb{R}^1$$
 \mathbb{R}^7
 \mathbb{R}^6
 \mathbb{R}^5

[0019] wherein R^1 represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, $-SR^{12}$, $-CO_2R^{13}$, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}COR^{29}$, or $-NR^{30}SO_2R^{31}$; and R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} and R^{31} each independently represents a hydrogen atom, an aliphatic group, or an aromatic group;

[0020] R²,R³,R⁶ and R⁷ each independently represents a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, —OR ⁵¹,—SR⁵²,—CO₂R⁵³,—OCOR⁵⁴,—NR⁵⁵R⁵⁶,—CONR ⁵⁷,R⁵⁸,—SO₂R⁵⁹,SO₂NR⁶⁰R⁶¹,—NR ⁶²CONR ⁶³R⁶⁴,—NR ⁶⁵CO₂R ⁶⁶,—COR ⁶⁷,—NR ⁶⁸COR ⁶⁹ or —NR ⁷⁰SO₂R ⁷¹;R⁵¹,R⁵²,R⁵³,R⁵⁴,R⁵⁵, R ⁵⁶, R ⁵⁷,R ⁵⁸,R ⁵⁹,R ⁶⁰,R ⁶¹,R ⁶²,R ⁶³,R ⁶⁴,R ⁶⁵,R ⁶⁶,R ⁶⁷,R ⁶⁸,R ⁶⁹,R ⁷⁰ and R ⁷¹ each independently represents a hydrogen atom, an aliphatic group or an aromatic group;

[0021] R⁴ and R⁵ each independently represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic ring; and

[0022] R⁸ represents a hydrogen atom, an aliphatic group or an aromatic group.

[0023] A fourth aspect of the present invention is a coloring composition comprising: coloring particulates containing an oil soluble dye and an oil soluble polymer, said coloring particulates being dispersed in an aqueous medium; and wherein the coloring composition has wavelength of maximum absorption (λ max(nm)) in the wavelength range from 510 to 560 nm and when the absorbance at the wavelength of maximum absorption (λ max(nm)) is regarded as 1, the absorbance at a wavelength (λ max+75 (nm)) is no more than 0.2 and the absorbance at a wavelength (λ max-75 (nm)) is no more than 0.4.

[0024] A fifth aspect of the present invention is a coloring composition comprising: coloring particulates containing an oil soluble dye represented by the following formula (I) and a vinyl polymer having at least one of carboxyl groups and sulfonic acid groups as ionic groups, said coloring particulates being dispersed in an aqueous medium:

Formula (I) $\begin{array}{c}
R^2 \\
R^3 \\
R \\
N \\
N
\end{array}$ $\begin{array}{c}
R^3 \\
R^3 \\
R \\
N
\end{array}$

[0025] wherein R^1 represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, $-SR^{12}$, $-CO_2R^{13}$, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, $-COR^{27}$, or $-NR^{28}COR^{29}$, or $-NR^{30}SO_2R^{31}$; and $-R^{11}R^{12}R^{13}R^{14}R^{15}$, $-R^{16}R^{17}R^{18}R^{19}R^{20}R^{21}R^{22}R^{23}R^{24}R^{25}R^{26}$, $-R^{27}R^{28}R^{29}$, $-R^{30}$ and $-R^{31}$ each independently represents a hydrogen atom, an aliphatic group, or an aromatic group;

[0026] A represents —NR⁴R⁵ or a hydroxyl group; R⁴ and R⁵ each independently represents a hydrogen tom, an aliphatic group, an aromatic group or a heterocyclic group; B¹ represents — $C(R^6)$ — or —N—; B² represents — $C(R^7)$ — or —N=; R²,R³,R⁶ and R⁷ each independently represents a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group,